Analytical and Three Numerical approach to Solve Second Order ODEs
نویسندگان
چکیده
منابع مشابه
On the Numerical Solution for Singularly Perturbed Second-order ODEs
In this article we consider the approximation of singularly perturbed boundary value problems using a local adaptive grid h-refinement for finite element method, the variation iteration method and the homotopy perturbation method. The solution to such problems contains boundary layers which overlap and interact and the numerical approximation must take this into account in order for the resulti...
متن کاملA numerical approach to solve eighth order boundary value problems by Haar wavelet collocation method
In this paper a robust and accurate algorithm based on Haar wavelet collocation method (HWCM) is proposed for solving eighth order boundary value problems. We used the Haar direct method for calculating multiple integrals of Haar functions. To illustrate the efficiency and accuracy of the concerned method, few examples are considered which arise in the mathematical modeling of fluid dynamics an...
متن کاملIntegrating Factors for Second-order ODEs
A systematic algorithm for building integrating factors of the form μ(x, y), μ(x, y) or μ(y, y) for second order ODEs is presented. The algorithm can determine the existence and explicit form of the integrating factors themselves without solving any differential equations, except for a linear ODE in one subcase of the μ(x, y) problem. Examples of ODEs not having point symmetries are shown to be...
متن کاملPoint equivalence of second-order ODEs: Maximal invariant classification order
We show that the local equivalence problem of second-order ordinary differential equations under point transformations is completely characterized by differential invariants of order at most 10 and that this upper bound is sharp. We also demonstrate that, modulo Cartan duality and point transformations, the Painlevé–I equation can be characterized as the simplest second-order ordinary different...
متن کاملhigh order second derivative methods with runge--kutta stability for the numerical solution of stiff odes
we describe the construction of second derivative general linear methods (sglms) of orders five and six. we will aim for methods which are a--stable and have runge--kutta stability property. some numerical results are given to show the efficiency of the constructed methods in solving stiff initial value problems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: INTERNATIONAL JOURNAL OF ADVANCED SCIENTIFIC AND TECHNICAL RESEARCH
سال: 2018
ISSN: 2249-9954
DOI: 10.26808/rs.st.i8v4.06